Fast Gpu-based Interpolation for Sar Back- Projection

نویسندگان

  • A. Capozzoli
  • C. Curcio
  • A. Liseno
چکیده

We introduce and discuss a parallel SAR backprojection algorithm using a Non-Uniform FFT (NUFFT) routine implemented on a GPU in CUDA language. The details of a convenient GPU implementation of the NUFFT-based SAR backprojection algorithm, amenable to further generalizations to a multi-GPU architecture, are also given. The performance of the approach is analyzed in terms of accuracy and computational speed by comparisons to a “standard”, parallel version of the backprojection algorithm exploiting FFT+interpolation instead of the NUFFT. Different interpolators have been considered for the latter processing scheme. The NUFFT-based backprojection has proven significantly more accurate than all the compared approach, with a computing time of the same order. An analysis of the computational burden of all the different steps involved in both the considered approaches (i.e., standard and NUFFT backprojections) has been also reported. Experimental results against the Air Force Research Laboratory (AFRL) airborne data delivered under the “challenge problem for SAR-based Ground Moving Target Identification (GMTI) in urban environments” and collected over circular flight paths are also shown.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Back-Projection Algorithm for SAR Image Formation

We propose a fast algorithm for far-field SAR imaging based on a new fast back-projection algorithm developed for tomography. We also modify the algorithm for the near-field scenario. The fast back-projection algorithm for SAR has computational complexity . Compared to traditional FFT-based methods, our new algorithm has potential advantages: the new algorithm does not need frequency-domain int...

متن کامل

A fast back-projection algorithm for bistatic SAR imaging

Using a far-field model, bistatic synthetic aperture radar (SAR) acquires Fourier data on a rather unusual, non-Cartesian grid in the Fourier domain. Previous image formation algorithms were mainly based on direct Fourier reconstruction to take advantage of the FFT, but the irregular coverage of the available Fourier domain data and the 2-D interpolation in the Fourier domain may adversely affe...

متن کامل

Fast back-projection algorithm for Bistatic SAR with parallel trajectory

Exploiting the fundamental redundancy between nearby aperture positions for high frequency reflectivity components in the along-track direction, we will propose a factorized back-projection algorithm for bistatic SAR with parallel trajectory inversion based on recursive partitioning of the back-projection integral. The basic back-projection summation is factorised into n processing stages, each...

متن کامل

Fourier-Based Forward and Back-Projectors for Iterative Image Reconstruction

Iterative image reconstruction algorithms play an increasingly important role in modern tomographic systems, especially in emission tomography. With the fast increase of the sizes of the tomographic data, reduction of the computation demands of the reconstruction algorithms is of great importance. Fourier-based forward and back-projection methods have the potential to considerably reduce the co...

متن کامل

Fast System Matrix Calculation in CT Iterative Reconstruction

Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012